Applying Genetic Optimization Algorithm in Selecting Portfolios of listed companies at Tehran Stock Exchange

Authors

1 Assistant Professor of Accounting, University of Tehran, Tehran, Iran.

2 M.A. Accounting, University of Tehran, Tehran, Iran.

Abstract

Selecting a portfolio is one of the most critical issues in investment. In this process, the investor faces numerous alternatives and he must choose the most optimized one. Determining which shares are most suitable to be put in the portfolio and capital allocation between them, are complex issues. Theoretically, assuming constant return, we can minimize the risk by applying a quadratic equation, but experimentally and with respect to the Diverse investing tools and different investor's utility functions, the mathematical approach for solving this model requires vast calculation and planning. The main object of this research is applying genetic optimization algorithm in selecting a portfolio from Tehran Stock Exchange, listed companies, In away that the chosen portfolio minimize the investment risk while maximizing the return. In order to do this, we choose 40 companies shares from the population. After calculating the main variables – monthly risk and return for an eight year period- and preparing the required algorithm, the results are compared with Markowitz and the Random choice models ones in different levels of portfolio and with respect to hypotheses. Relevant statistical tests on 1st and 2nd hypotheses showed a meaningful difference; furthermore the genetic algorithm results defeated the Markowitz and the Random choice models.

جانسون، ریچارد، آ. و دین دبلیو و چرن. (1998). تحلیل آماری چند متغیری کاربردی، ترجمه حسینعلی نیرومند (1384)، موسسه چاپ و انتشارات دانشگاه فردوسی مشهد، مشهد.
حکیمی، ناصر (1379).  بررسی ریسک و بازده شرکت های سرمایه‌گذاری عضو بورس اوراق بهادار و مقایسه آن با ریسک و بازده سایر شرکت‌های عضو. پایان نامه کارشناسی ارشد، دانشکده مدیریت دانشگاه تهران.
ظهوری، قاسم.(1378). کاربرد روش‌های تحقیق علوم اجتماعی در مدیریت، موسسه انتشاراتی میر، تهران.
عبدالعی‌زاده شهیر، سیمین (1381)، ارائه روش کارا برای حل مسئله مجموعه دارایی بهینه، پایان نامه کارشناسی ارشد، دانشگاه صنعتی شریف، تهران.
Andreou, A. S., Georgopoulos, E. F., and S. D. Likothanassis. (December, 2002). Exchange-Rates Forecasting: A Hybrid Algorithm Based on Genetically Optimized Adaptive Neural Networks, Computational Economics. 20, 191-210, Springer Netherlands.
Chan, M., Wong, C., Cheung, B. K-S. And G. Y-N Tang. (1999).Genetic Algorithm in Multi-Stage Portfolio Optimization System, Hong Kong: The Hong Kong Polytechnic University. Provided by Society for Computational Economics in the series computing in Economics and Finance  2002, No.165.
Fichter, D. P. (2000). Application of Genetic Algorithm in Portfolio Optimization for the Oil & Gas Industry, Society of Petroleum Engineers Inc. SPE Annual Technical Conference and Exhibition, Dallas, TX, 1-4 October 2000.
Gen, M. and R. Cheng. (2000). Genetic Algorithm and Engineering Optimization, New York: Wiley – Inter science Publication.
Goldberg, D. E., (1989).Genetic Algorithms in Search, Optimization and Machine Learning, Boston: Addison-Wesley Longman Publishing Co.
Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, The University of Michigan.
Lazo, J. G., Maria, M., Vellasco, R., Auelio, M. and C. Pacheco. (2000). A Hybrid Genetic – Neural System for Portfolio Selection and Management, Proceeding Sixth Int. Conf. on Engineering Applications of Neural Networks, EANN2000. Kingston upon Thames.
MaHfoud, S. and G. Mani. (December, 1996). Financial Forecasting Using Genetic Algorithms, Applied Artificial Intelligence. 10, 543-566, Taylor & Francis.
Pacheco, M. A., Vellasco, M., Noronha, M. and C. Lopes. (2000). Cash flow Planning and Optimization through Genetic Algorithm, Provided by Society for Computational Economics in the series Computing in Economics and Finance, No. 333.