Bankruptcy Prediction of listed Companies in Tehran’s Stock Exchange by Artificial Neural Network (ANN) and Fulmer Model

Document Type : Research Paper

Authors

1 Associate Professor, Faculty of Industrial Technologies, Department of Industrial Engineering, Urmia University of Technology, Urmia, Iran.

2 Department of Management and Accounting, Elm-o-Fann University College of Science and Technology, Urmia, Iran.

10.22103/jdc.2020.16422.1102

Abstract

Objective:  Predictive models for diagnosing bankruptcy or financial crisis have been widely discussed in studies and articles in the fields of economics and accounting and have been considered by financial institutions. One of the methods that can be used to help take advantage of investment opportunities and better allocation of resources is to predict financial distress or bankruptcy of companies. So, by providing the necessary warnings, can be alerted companies to the occurrence of financial distress so that according to these warnings they can take appropriate action, Secondly, investors and creditors can identify distinguish investment opportunities from unfavorable opportunities and invest in the right opportunities. Timely foresight can help decision-makers find solutions and prevent bankruptcy. The main aim of the current study is to express, determine and explain the predictive power of bankruptcy and profitability models of Tehran Stock Exchange companies to evaluate their performance and financial status by logistic regression using financial ratios selected by artificial neural network and Fulmer models.
 
Method: The method of the present study is applied in terms of purpose and descriptive in nature. Logistic regression technique was used to test the hypotheses. The results are presented in two parts: descriptive and inferential statistics. Collection of information from the financial statements of 132 companies of Tehran Stock Exchange during the years 2012 to 2018. Firstly, the initial classification and processing of information was performed and then Eviews software was used to fit the Fulmer model and Spss26 software was used for the neural network model. Suitable indicators based on the research background in the models include debt-to-equity ratio of shareholders, profit before interest and taxes, total liabilities to assets, receivable accounts ration to sale, net return on assets, long-term debt to assets, working capital, net profit to to sale.
 
Results: The research results indicates that both artificial neural network and Fulmer models have the ability to detect bankruptcy prediction with different accuracy, but the predictive accuracy of artificial neural network model is higher and has better performance compared to Fulmer model. In the artificial neural network model, the variables of working capital, receivable accounts on sales, net profit on assets, net profit on sales and long-term debt to assets are significant at high level in predicting corporate bankruptcy. Also, among the financial ratios used, the ratio of receivable accounts on sales had the most impact and the debt-to-equity ratio had the least impact on determining bankruptcy among the available variables.
Conclusion: The best way is to take preventive measures before the occurrence of financial incapability of companies and in this regard, the result of the present study confirms the use of artificial neural network method to predict the bankruptcy of listed companies. And also, the crtiteria of working capital, net profit on assets, ratio of total debt to total assets and net profit on sales are related to transactions with bankruptcy. That is, the higher the ratio of these ratios, the probability of bankruptcy is lower. Therefore, by issuing the necessary warnings to decision makers and as a result of their actions, companies can be guided in the right direction in order to avoid wasting resources.

Keywords


اسکندری، جمشید. (1395). اصول حسابداری 3، انتشارات کتاب فرشید.
اصغری، زهرا؛ اصفهانی پور، اکبر، (1398)، ارائه مدل پیش‌بینی ورشکستگی شرکتها با ترکیب الگوریتم بهینه سازی ازدحام ذرات و ماشین بردار پشتیبان، چهارمین کنفرانس ملی در مدیریت، حسابداری و اقتصاد با تاکید بر بازاریابی منطقه ای و جهانی، تهران.
امینی، پیمان. (1385) بررسی امکان سنجی استفاده از مدل فولمر برای تخمین ورشکستگی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران. پایان‌نامه کارشناسی ارشد، رشته حسابداری دانشگاه تربیت مدرس، تهران.
پیرایش، رضا، منصوری، علی، امجدیان، صابر. (1388). طراحی مدل ریاضی مبتنی بر جریانهای نقدی برای پیش بینی ورشکستگی شرکت‌های‌ پذیرفته شده در بورس اوراق بهادار تهران. توسعه و سرمایه، (2)2، 94-73.
جهانخانی، علی؛ پارسائیان، علی، مترجم. (1397). مدیریت مالی (جلد اول).  ریموند پی. نوو. تهران: انتشارات سازمان سمت.
دباغ، رحیم، احمدی، ساناز. (1398). ارزیابی عملکرد شرکت‌های آب و فاضلاب با مدل کارت امتیاز متوازن مطالعه موردی: شرکت آب و فاضلاب شهری استان آذربایجان غربی. مجله آب و فاضلاب،  30(1)، 63-50.
دباغ، رحیم؛ رئیسی، دیبا؛ خانلوی صانع، علی. (۱۳۹۹). بررسی تاثیرگذاری و تاثیرپذیری عوامل موثر بر بهره‌وری منابع انسانی با روشهای تصمیم گیری چند معیاره (مورد مطالعه شرکت توزیع برق آذربایجان شرقی). نشریه کیفیت و بهره‌وری صنعت برق ایران، ۹(۴)، 99-83.
شاکری، عباس. (1384). مروری تاریخی بر روند شکل گیری نظریه های اقتصاد کلان. پژوهش‌های اقتصادی ایران، (23)7، 93-69.
ویکی‌پدیا، واژه «بیکاری در ایران»، https://fa.wikipedia.org.
بت شکن، محمدهاشم، سلیمی، محمد جواد، فلاحتگر متحدجو، سعید. (1397). ارائه یک روش ترکیبی به منظور پیش بینی درماندگی مالی شرکت های پذیرفته شده در بورس اوراق بهادار تهران. تحقیقات مالی، (2)20، 192-173
قدرتی، حسن، معنوی مقدم، امیرهادی. (1389). بررسی دقت مدل های پیش بینی ورشکستگی (مدل های آلتمن، شیراتا، اهلسون، زمیسکی، اسپرینگیت، سی ای اسکور، فولمر، ژنتیک فرج زاده و ژنتیک مک کی) در بورس اوراق بهادار تهران. تحقیقات حسابداری و حسابرسی، (7)2، 128-140.
منصور، جهانگیر. (1397).  قانون تجارت، جلد اول، تهران، انتشارات نشر دیدار.
References
Amini, P. (2006). The feasibility analysis of fulmer model in bankruptcy prediction of the firms accepted in Tehran Stock Exchange (TSE). Master Thesis, Accounting, Tarbiat Modares University [In Persian].
Asghari, Z., Isfahanpour, A. (2019). Provide a corporate bankruptcy prediction model by combining particle swarm optimization algorithm and support vector machine. Accounting and Economics with Emphasis on Regional and Global Marketing. Shahid Beheshti University [In Persian].
Botshekan, M., Salimi, M., Falahatgar Mottahedjoo, S. (2018). Developing a hybrid approach for financial distress prediction of listed companies in Tehran stock exchange. Financial Research Journal, 20(2), 173-192 [In Persian].
Charalambous, C., Charitou, A., Kaourou, F. (2000). Comparative analysis of artificial neural network models: Application in bankruptcy.
Dabbagh, R., Ahmdi, S. (2019). Evaluation of water and wastewater company performance by using balanced scorecard model (Case study: west Azarbayjan water and wastewater company). Journal of Water and Wastewater; Ab va Fazilab, 30(1), 50-63 [In Persian].
Dabbagh R, Raeisi D, alikhanlo S. (2020). Investigating the effectiveness and influence of factors affecting human resources productivity by multi criteria decision making methods (Case study of East Azarbaijan electric power distribution company). Ieijqp, 9(4), 83-99 [In Persian].
Eskandari., J. (2016). Principles of accounting 3. Farshid Book Publishing [In Persian].
Falahtgar, S., Botshekan, M., Salimi, M. (2018). Provide a combined method to predict the financial distress of companies listed on the Tehran Stock Exchange. Financial Research, 20(2), [In Persian].
Ghodrati, H. (2010). Investigating the accuracy of bankruptcy prediction models in the Tehran Stock Exchange. Accounting and auditing research. [In Persian]
Gitman, LJ. (1996). Principleof managerial finance (7 RD ED). New-York: Harper.
Heryati, Sh., Ismail, Sh., Wah Yap, B. (2018). Personal bankruptcy prediction using decision tree model. Journal of Economics Finance and Administrative Science, ISSN 2218-0648.
Jahankhani, A., Parsaeean, A. (2018). Financial management. Tehran: Samat Organization Publications [In Persian].
Jardin, Ph., Veganzones, D., Séverin, E. (2019). Forecasting corporate bankruptcy using accrual-based models. ISSN: 0927-7099.
Mansour, J. (1998). Commercial Law. Volume One, Tehran, Didar Publishing.
Pirayesh, R., Mansory, A., Amjadeian, S. (2009). Designing a mathematical model based on cash flows for predicting bankruptcy of accepted companies in Tehran Stok Exchauge (TSE). Journal of Development and Capital, 2(2), 73-94 [In Persian].
Shakeri, A. (2005). Historical review of macroeconomic theories. Iranian Journal of Economic Research, 7(23), 69-93 [In Persian].