Application of Cumulative Entropy Measure and PSO Algorithm in Tehran Stock Exchange Petrochemical Companies Portfolio Optimization

Document Type : Research Paper

Authors

1 M.A. of Energy Economics, Persian Gulf University, Bushehr, Iran.

2 Associate Professor of Economics, Persian Gulf University, Bushehr, Iran.

3 Associate Professor of Statistics, Persian Gulf University, Bushehr, Iran.

4 Assistant Professor of of Economics, Persian Gulf University, Bushehr, Iran.

10.22103/jdc.2022.17949.1142

Abstract

Objective: The main object of this study is to use a new measure of risk called Cumulative entropy in the Markowitz portfolio optimization model and solve this model using Particle swarm optimization (PSO) to optimize the portfolio of Petrochemical companies by Applying the data consist of monthly returns of the Fifteen petrochemical companies in Tehran Stock Exchange from 2013 to 2019. The Markowitz model uses the variance as a risk measure by default. in this study, a new measure of risk called Cumulative Entropy is introduced. This measure can be used in many issues without considering the limitations of variance (standard deviation).
 
Methods: The Markowitz model is one of the most important models for solving portfolio optimization problems, but this model has many disadvantages. The Markowitz optimization problem can be solved by simple mathematical programming models when the number of assets to be invested and the market constraints are small, but when the real-world conditions and constraints are taken into account, the problem becomes complex and difficult. One of the methods that have solved human ambiguities in recent years in solving many optimization problems and has been successful in responding to complex problems is the so-called intelligent methods and algorithms. Intelligent methods that were introduced to eliminate the shortcomings of classical (traditional) optimization methods with a comprehensive and random search, largely guarantees the possibility of achieving better results.
Due to the mentioned problems in this research, a new criterion by the name Cumulative entropy is introduced which can be used as an alternative to variance in the Markowitz mean-variance optimization model as a risk criterion. Also, due to the mentioned problems for the Markowitz model, in this research, the meta-innovative particle cumulative motion (PSO) algorithm will be used to optimize the stock portfolio for Petrochemical companies stocks.
Results: As can be seen in the PSO algorithm, the average value of the stock return function is less than the average value of the stock return function in the Markowitz model, while the average value of the portfolio risk function is well minimized to a value less than the average portfolio risk function in the Markowitz model. For the final comparison of these two models, using the values of the table, the Reward to Volatility index (which is defined as the ratio of return to portfolio risk) is calculated that in the PSO algorithm is higher than the Markowitz model; Therefore, it can be seen that the PSO algorithm performs portfolio optimization better than the Markowitz model and produces optimal answers
 
Conclusion: According to the research findings the Cumulative Entropy measure can be used in many issues without considering the limitations of variance (standard deviation).
In the PSO algorithm, the average value of the stock return function is slightly less than the average value of the stock return function in the Markowitz model, while the average value of the portfolio risk function is much less than the average value of the portfolio risk function in Markowitz programming. Comparing the volatility reward index of the PSO algorithm with the Markowitz model, it was observed that the value of this index is higher in the PSO algorithm, which shows PSO algorithm performs portfolio optimization better and produces optimal answers.

Keywords


بیات، علی؛ اسدی، لیدا. (1396). بهینه‌سازی پرتفوی سهام: سودمندی الگوریتم پرندگان و مدل مارکوویتز. مجله مهندسی مالی و مدیریت اوراق بهادار، 8(32)، 63-85.
راعی، رضا؛ باجلان، سعید؛ حبیبی، مصطفی؛ نیک‌عهد، علی. (1396). بهینه‌سازی پورتفوی چندهدفه بر اساس میانگین، واریانس، آنتروپی و الگوریتم ازدحام ذرات. مجله مدل‌سازی ریسک و مهندسی مالی، 2(2)، 379-362.
راعی، رضا؛ علی بیگی، هدایت. (1389). بهینه‌سازی پرتفوی سهام با استفاده از روش حرکت تجمعی ذرات. فصلنامه تحقیقات مالی، 12(29)، 41-21.
زندخاوری، چیستا. (1394). بهینه‌سازی پورتفوی بر اساس مدل میانگین-واریانس با استفاده از الگوریتم‌های تکاملی چندهدفه. پایان‌نامه کارشناسی ارشد، دانشکده مهندسی صنایع، دانشگاه خاتم.
قندهاری، مهسا؛ شمشیری، عظیمه؛ فتحی، سعید. (1396). بهینه‌سازی سبد سهام بر مبنای روش‌های تخمین ناپارامتریک. نشریه مدیریت تولید و عملیات، 8 (۱)، 184-175.
کشاورز، ثمره. (1391). مقایسه مدل دو هدفه و سه هدفه بهینه‌سازی پرتفوی با استفاده از الگوریتم ژنتیک رتبه‌بندی نامغلوب (NSGA II). پایان‌نامه کارشناسی ارشد، دانشکده علوم اجتماعی و اقتصادی، دانشگاه الزهرا.
مدرس، احمد؛ محمدی استخری، نازنین. (1387). انتخاب یک سبد سهام از بین سهام شرکتهای پذیرفته شده در بورس اوراق بهادار تهران با استفاده از مدل بهینه‌سازی الگوریتم ژنتیک. مجله توسعه و سرمایه، 1(1)، 92-71.
میزبان، هدیه سادات؛ افچنگی، زهرا؛ احراری، مهدی؛ آروین، فرشاد؛ سوری، علی. (1391). بهینه‌سازی سبد سهام با استفاده از الگوریتم ازدحام ذرات در تعاریف مختلف اندازه‌گیری ریسک. اقتصاد مالی، 6(19)، 227-205.
 
 
References
Bayat, A., Asadi, L. (2017). Stock portfolio optimization: Effectiveness of particle swarm optimization a Markowitz model. Journal of Financial Engineering and Securities Management (Portfolio Management). 8(32), 63-85 [In Persian].
Clark, J., Kim, D. (2013). Modern portfolio theory: Foundations, analysis, and new developments (+ website), Wiley Finance series, Hoboken, N.J:J. Wiley & Sons.
Corazza, M., Fasano, G., Gusso, R. (2013). Particle swarm optimization with non-smooth penalty reformulation for a complex portfolio selection problem. Applied Mathematics and Computation, 224, 611–624.
Cura, T. (2009). Particle swarm optimization approach to portfolio optimization. Nonlinear Analysis: Real World Applications, 10(4), 2396–2406.
Ghandehari, M., Shamshiri, A., Fathi, S. (2017). Portfolio optimization based on nonparametric estimation methods. Journal of Production and Operations Management, 8(1), 175-184 [In Persian].
Gu, R. (2017). Multiscale shannon entropy and its application in the stock market. Physica A: Statistical Mechanics and its Applications, 484(C), 215-224.
Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. IEEE: International Conference on Neural Network, Perth, WA, Australia, 1942-1948.
Keshavarz, S. (2012). Comparison of two-objective and three-objective portfolio optimization models using non-dominated sorting genetic algorithms (NSGA II). Master Thesis, Faculty of Social and Economic Sciences, Al-Zahra University [In Persian].
Komilov, N. (2008). Particle Swarm Intelligence: An Alternative Approach in Portfolio Optimization, Master Thesis, University Ca'Foscary, Venezia.
Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.
Martinez, S., Cortes, J., Bullo, F. (2007). Motion coordination with distributed information. IEEE Control Systems Magazine, 27(4), 75-88.
Mizban, H., Afchangi, Z., Ahrari ,M., Arvin F., Souri, A. (2012). Portfolio optimization problem in different risk measures using particle swarm optimization. Journal of Financial Economics (Financial Economics and Development), 6(19), 205-227 [In Persian].
Modarres, Ph.D, A., Mohammadi Estakhri, N. (2008). Applying genetic optimization algorithm in selecting portfolios of listed companies at Tehran Stock Exchange. Journal of Development and Capital, 1(1), 71-92 [In Persian].
Poole, D., Mackworth, A. (2010). Artificial intelligence: Foundations of computational Agents. Cambridge University Press, ISBN 978-0-521-51900-7.
Philippatos, G., Wilson, C. (1972). Entropy, market risk, and the selection of efficient portfolios. Applied Economy, 4(3), 209–220.
Raei, R., Ali Beigi, H. (2011). Portfolio optimization using particle swarm optimization method. Financial Research Quarterly, 12(29), 21-40 [In Persian].
Raei, R., Bajelan, S., Habibi, M., Nikahd, A. (2017). Optimization of multi-objective portfolios based on mean, variance, entropy and particle swarm algorithm. Quarterly Journal of Risk Modeling and Financial Engineering, 2(3), 362–379 [In Persian].
Tahmasebi, S., Parsa, H. (2019). Notes on cumulative entropy as a risk measure. Stochastics and Quality Control, 34(1), 1-7.
Zandkhavari, C. (2015). Portfolio optimization based on Mean-variance model using Multi-Objective Evolutionary Algorithms. Master Thesis, Faculty of Industrial Engineering, Khatam University [In Persian].