A Comparative Study of Bankruptcy Prediction Models and Presenting an Optimized Model for Iran's Economic Environment

Document Type : Research Paper

Authors

1 Ph.D. Candidate of Accounting, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

2 Assistant Professor of Accounting, Tabriz Branch, Islamic Azad University, Tabriz, Iran.

10.22103/jdc.2022.18728.1187

Abstract

Objective: Predicting corporate bankruptcy is one of the most important activities in auditing risk and uncertainty of companies. Therefore, introducing appropriate models with high accuracy to predict bankruptcy is essential in many decision-making processes. The purpose of this study is to introduce an appropriate and superior model for predicting corporate bankruptcy in the Iranian economic environment. Chava and Jarrow (2004) and Campbell et al. (2008) have been introduced as hybrid models that consider accounting and market information together. In this study, we intend to use logistic regression and accuracy testing to create a better model. Also, for the first time in Iran, the market value of balance sheet items has been used as a suitable alternative to some balance sheet variables and market variables.
 
Methods: The study period is 13 years (from 2005 to 2019) and the number of sample companies is 188 companies and 2444 years - companies. The data required for this study, which consisted of accounting-based and market-based and combined data, were extracted from financial statements and accompanying notes of sample companies and stock exchange softwares. Using logistic regression, the coefficients of the variables of the mentioned models were found.
 Results: The proposed models were performed using conditional fixed effect logistic regression and the best model was selected using the ROC curve. The results showed that both Chava & Jarrow (2004), Campbell et al (2008). Models have a suitable and very high power to predict bankruptcy in Iran's economic environment. But Chava & Jarrow model with 96.5% accuracy was introduced as the top model in predicting corporate bankruptcy for Iran's economic environment. Among the variables of the Chava & jarrow model, only three variables Included ratio of total debt-to-assets (TLTA), ratio of net income to total assets (NITA) and Stock returns fluctuations (SIGMA) at 95 confidence level, had a significant effect on corporate bankruptcy. And the other two independent variables of this model did not have a significant effect on the probability of bankruptcy. Also, Among the variables of the Campbell et al model, only five variables Included the ratio of total liabilities to total market value of assets (TLMTA), the ratio of net income to total market value of assets (NIMTA), the ratio of cash and instant assets to total market value of assets (CASHMTA), stock price volatility (SIGMA) ) And the ratio of book value of equity to market value of the company (RSIZE) at the 95 confidence level had a significant effect on the probability of bankruptcy of companies. And the other three independent variables, the difference between the company's stock return and market return (EXRET), the ratio of the company's stock market value to the book value of the company's stock (MB) and the logarithm of the stock price (PRICE) had no significant effect on the probability of bankruptcy.
 Conclusion: Among the variables that were significant in the model, the ratio of net profit to market value of assets (NIMTA) was the most effective variable. Also, according to the regression coefficients of the variables, it is concluded that bankruptcy is inversely related to the ratio of net income to market value of assets(NIMTA), and the ratio of net income to book value of assets(NITA), and the ratio of cash and instant assets to market value of assets(CASHMTA). Bankruptcy is also directly related to the ratio of total liabilities to the book value of assets (TLTA) and Stock returns fluctuations (SIGMA). In other words, Companies whose stock return fluctuations are not in good shape and have a lot of debts more likely to go bankrupt.

Keywords

Main Subjects


پورحیدری، امید؛ کوپائی حاجی، مهدی. (1389). پیش‌بینی بحران مالی شرکت‌ها با استفاده از مدل مبتنی بر تابع تفکیکی خطی. پژوهش‌های حسابداری مالی، 2(1)، 46-33.
پیرایش، رضا؛ منصوری، علی؛ امجدیان، صابر. (1388). طراحی مدل ریاضی مبتنی بر جریان‌های نقدی برای پیش‌بینی ورشکستگی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران. مجله توسعه و سرمایه، 2(2)، 94-73.
حاجی هاشم، مسعود؛ امیرحسینی، زهرا. (1398). پیش‌بینی ورشکستگی و راهبری شرکتی شرکت‌ها: دیدگاه نسبت‌های مالی. دانش حسابداری و حسابرسی مدیریت، 30، 220-201.
حسینی، سیدمحسن؛ رشیدی، زینب. (1392). پیش‌بینی ورشکستگی شرکت‌ها با استفاده از درخت تصمیم و رگرسیون لجستیک. پژوهش‌های حسابداری مالی؛ 17، 130-105.
دباغ، رحیم؛ شیخ بگلو، سیما. (1399). پیش‌بینی ورشکستگی شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران با روش‌های شبکه عصبی مصنوعی و مدل فالمر. مجله توسعه و سرمایه، 5(2)، 168-153.
صالحی، نازنین؛ یانچشمه، مجید. (1395). بررسی تطبیقی مدل خطر و الگو‌های سنتی برای پیش‌بینی ورشکستگی. حسابداری مالی، 30، 121-94.
فرهنگ، امیرعلی؛ اثنی عشری، ابوالقاسم؛ ابوالحسنی، اصغر؛ رنجبرفلاح، محمدرضا؛ بیابانی، جهانگیر. (1397)، سرمایه بانک، ریسک نقدینگی و اعتباری در بانک‌های ایران. نظریه‌های کاربردی اقتصاد، ۵(4)، 270-247.
فیروزیان، محمود؛ جاوید، داریوش؛ نجم الدینی، نرگس. (1390). کاربرد الگوریتم ژنتیک در پیش‌بینی ورشکستگی و مقایسه آن با مدل Z آلتمن در شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران. بررسی‌های حسابداری و حسابرسی، 65، 114-99.
محسنی، رضا؛ رحیمیان ینگجه، سمیرا. (1397). بررسی عوامل مؤثر بر ورشکستگی با بهره گیری از کارآیی به عنوان یک متغیر پیش‌بینی‌کننده مبتنی بر رهیافت پنل دیتا لاجیت. اقتصاد مقداری(بررسی‌های اقتصادی سابق)، 15(2)، 130-111.
وزیری، ماریا. (1399). پیش‌بینی ورشکستگی شرکت‌های پذیرفته شده در بورس اوراق بهادار با استفاده از الگوریتم جنگل تصادفی (باتأکید بر گزارشگری مالی). رویکردهای پژوهشی نوین در مدیریت و حسابداری، 33، 75-66.
References
Agarwal, V., Taffler, R. (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking & Finance, 32(8), 1541-1551.
Alaka, H.A., Oyedele, L.O., Owolabi, H.A., Kumar, V., Ajayi, S.O., Akinade, O.O., Bilal, M. (2018). Systematic review of bankruptcy prediction models: Towards a framework for tool selection. Expert Systems with Applications, 94, 164-184.
Altman, E.I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609.
Altman, E.I., Haldeman, R., Narayanan, P. (1977). Zeta analysis: A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1(1), 29–54.
Altman, E.I., Hotchkiss, E. (1993). Corporate financial distress and bankruptcy.
Beaver, W.H. (1966). Financial ratios as predictors of failure. Journal of Accounting Research, 4, 71-111.
Bharath, S.T., Shumway, T. (2008). Forecasting default with the Merton distance to default model. The Review of Financial Studies, 21(3), 1339-1369.
Black, F., Scholes, M. (2019). The pricing of options and corporate liabilities. In World Scientific Reference on Contingent Claims Analysis in Corporate Finance: Volume 1: Foundations of CCA and Equity Valuation (pp. 3-21).
Campbell, J.Y., Hilscher, J., Szilagyi, J. (2008). In search of distress risk. The Journal of Finance, 63(6), 2899-2939.
Chava, S., & Jarrow, R. A. (2004). Bankruptcy prediction with industry effects. Review of Finance, 8(4), 537-569.
Dabagh, R., Sheikhbeiglou, S. (2021). Bankruptcy prediction of listed companies in Tehran’s Stock Exchange by artificial neural network (ANN) and fulmer model. Journal of Development and Capital, 5(2), 153-168 [In Persian].
Du Jardin, P. (2021). Forecasting bankruptcy using biclustering and neural network-based ensembles. Annals of Operations Research, 299(1), 531-566.
Fagerland, M.W., Hosmer, D.W., Bofin, A.M. (2008). Multinomial goodness‐of‐fit tests for logistic regression models. Statistics in Medicine, 27(21), 4238-4253.
Farhang, A.A., Asna Ashari, A., Abolhasani Hastiani, A., Ranjbar Fallah, M.R. Biabani, J. (2019). Bank capital, liquidity risk and credit in Iran's banks. Quarterly Journal of Applied Theories of Economics, 5(4), 247-270 [In Persian].
Firouzian, M., Javid, D., Najmadini, N. (2012). The application of genetic algorithms in bankruptcy predication and the comparison of it with altman's Z-model listed companies in Tehran Stocks Exchange (TSE). The Iranian Accounting and Auditing Review, 18(65), 99-114 [In Persian].
García, V., Marqués, A.I., Sánchez, J.S. (2019). Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction. Information Fusion, 47, 88-101.
Haji Hashem, M., Amirhosseini, Z. (2019). Bankruptcy prediction and corporate governance: Financial ratio approach. Iranian Management Accounting Association, 8(30), 201-220 [In Persian].
Hillegeist, S.A., Keating, E.K., Cram, D.P. Lundstedt, K.G. (2004). Assessing the Probability of Bankruptcy. Review of Accounting Studies, 9, 5–34.
Hosaka, T. (2019). Bankruptcy prediction using imaged financial ratios and convolutional neural networks. Expert systems with applications, 117, 287-299.
Hosmer, D.W., Lemesbow, S. (1980). Goodness of fit tests for the multiple logistic regression model. Communications in statistics-Theory and Methods, 9(10), 1043-1069.
Jaki, A., Ćwięk, W. (2021). Bankruptcy prediction models based on value measures. Journal of Risk and Financial Management, 14(1), 1-14.
Korol, T. (2019). Dynamic bankruptcy prediction models for European enterprises. Journal of Risk and Financial Management, 12(4), 185.
Kou, G., Chao, X., Peng, Y., Alsaadi, F.E., Herrera-Viedma, E. (2019). Machine learning methods for systemic risk analysis in financial sectors. Technological and Economic Development of Economy, 25(5), 716-742.
Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K., Kou, S. (2021). Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decision Support Systems, 140, 113429.
Merton, R.C. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29(2), 449-470.
Mohseni, R., Rahimian, S. (2018). Bankruptcy prediction by using efficiency as a predictor variable based on Logit Panel data. Quarterly Journal of Quantitative Economics, 15(2), 111-130 [In Persian].
Mousavi, M.M., Ouenniche, J. (2018). Multi-criteria ranking of corporate distress prediction models: empirical evaluation and methodological contributions. Annals of Operations Research, 271(2), 853-886.
Ogachi, D., Ndege, R., Gaturu, P., Zoltan, Z. (2020). Corporate bankruptcy prediction model, a special focus on listed companies in Kenya. Journal of Risk and Financial Management, 13(3), 47.
Ohlson, J.A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), 109-131.
Pirayesh, R., Mansory, A., Amjadeian, S. (2009). Designing a mathematical model based on cash flows for predicting bankruptcy of accepted companies in Tehran stok Exchauge (TSE). Journal of Development and Capital, 2(2), 73-94 [In Persian].
Pourheydari, O., Koopaee Haji, M. (2010). Predicting of firms financial distress by use of linear discriminant function the model. Journal of Financial Accounting Research, 2(1), 33-46 [In Persian].
Salehi, N., Azimi, M. (2018). The comparison of the economic value in hazard models with accounting approach for bankruptcy prediction. Journal of Empirical Studies in Financial Accounting, 15(58), 107-135 [In Persian].
Shumway, T. (2001). Forecasting bankruptcy more accurately: A simple hazard model. The journal of business, 74(1), 101-124.
Vaziri, M. (2020). Bankruptcy of companies listed on the stock exchange using accidental forest algorithm (with emphasis on financial reporting). Journal of New Research Approaches in Management and Accounting, 4(33), 66-75 [In Persian].
Wang, H., Kou, G., Peng, Y. (2021). Multi-class misclassification cost matrix for credit ratings in peer-to-peer lending. Journal of the Operational Research Society, 72(4), 923-934.
Wang, H., Liu, X. (2021). Undersampling bankruptcy prediction: Taiwan bankruptcy data. Plos One, 16(7), e0254030.
Wu, Y., Gaunt, C., Gray, S. (2010). A comparison of alternative bankruptcy prediction models. Journal of Contemporary Accounting & Economics, 6(1), 34-45.
Yang, X., Dimitrov, S. (2017). Data envelopment analysis may obfuscate corporate financial data: using support vector machine and data envelopment analysis to predict corporate failure for nonmanufacturing firms. INFOR: Information Systems and Operational Research, 55(4), 295-311.
Zhang, Y., Liu, R., Heidari, A.A., Wang, X., Chen, Y., Wang, M., Chen, H. (2021). Towards augmented kernel extreme learning models for bankruptcy prediction: Algorithmic behavior and comprehensive analysis. Neurocomputing, 430, 185-212.
Zmijewski, M.E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting Research, 22, 59-82.