A Comprehensive Analysis of Two Decades in Intelligent Surveillance Systems for Fraud Detection Research

Document Type : Research Paper

Authors

1 Department of Information Technology Management, Allameh Tabataba'i University, Tehran, Iran.

2 Department of Industrial Management, Faculty of Management and Accounting, Allameh Tabataba'i University, Tehran, Iran.

3 Department of Accounting, Gävle University, Gävle, Sweden.

Abstract

Objective: The main objective of this research is to conduct a comprehensive study aimed at identifying all the factors affecting the design and optimal performance of intelligent monitoring systems for fraud detection. This includes a detailed analysis of the types of financial fraud, the types of data used for fraud detection systems (both financial and non-financial), and identifying the most effective machine learning and deep learning algorithms. In addition, the aim of this research is to establish appropriate criteria to measure their effectiveness and identify challenges in the design of intelligent monitoring systems. Finally, this research seeks to predict the future research process in order to respond to these challenges.
Method: This research, using a descriptive research method, carefully reviewed sources including articles published in international journals, conference papers, and especially articles indexed in the Scopus database and reputable domestic journals. The time range covers a 20-year period ending in 2022. To ensure the accuracy and precision of the analysis, MAXQDA software was used for coding and analysis sheets, while VOS Viewer software was used for keyword analysis and comprehensive research mapping.
Results: This study, by reviewing fraud detection systems research over the past two decades, has led to the presentation of a conceptual model for future fraud detection research that, by integrating financial and non-financial data, including environmental, social, and governance (ESG) criteria, causes a serious paradigm shift in research in this field. This approach increases the accuracy and transparency of fraud detection systems by removing existing limitations in fraud detection and by considering a wider range of variables.
Conclusion: This study contributes to the expansion of the field of knowledge by analyzing previous research conducted in this field and identifying future challenges and trends. The output of this study includes a detailed analysis of the current challenges in designing intelligent surveillance systems and extracting future research trends. By addressing these challenges and trends, future research can significantly improve the design and implementation of intelligent surveillance systems and ensure their effectiveness in detecting and preventing financial fraud.

Keywords

Main Subjects


بهرامی، آسو؛ نوروش، ایرج؛ راد، عباس و محمد ملقرنی، عطااله (1399). تقلب در صورت‌های مالی و تکنیک‌های نوین مورد استفاده جهت کشف آن. مطالعات حسابداری و حسابرسی، 10(38)، 105-118. https://www.iaaaas.com/article_134547.html.
تشدیدی، الهه؛ سپاسی، سحر؛ اعتمادی، حسین و آذر، عادل (1398). ارائه رویکردی نوین در پیش‌بینی و کشف تقلب صورت‌های مالی با استفاده از الگوریتم زنبور عسل. مجله دانش حسابداری، 10(3)، 139-167. https://jak.uk.ac.ir/article_2378.html.
ثقفی، علی و بهار مقدم، مهدی (1387). محرک‌های مؤثر بر مدیریت سود. مجله توسعه و سرمایه، 1(2)، 103-125. https://jdc.uk.ac.ir/article_1894.html.
جلال جمالی، علی اصغر؛ متقی، احمد محمدی (1400). مطالعه مقایسه‌ای الگوهای پیش‌بینی ورشکستگی و ارائه الگوی بهینه برای محیط اقتصادی ایران. مجله توسعه و سرمایه، 6(2)، 111-134. https://jdc.uk.ac.ir/article_3154.html.
شکوهی فرد، سیامک؛ ابوالحسنی، اصغر و فرهنگ، امیرعلی (1400). اثرات فساد بر شکنندگی مالی در ایران: رهیافت رگرسیون کوانتایل. مجله توسعه و سرمایه، 6(2)، 93-110. https://jdc.uk.ac.ir/article_3106.html.
قائدی، محمدرضا و همکاران (1395). روش تحلیل محتوا، از کمی گرایی تا کیفی گرایی. روش‌ها و مدل‌های روانشناختی، 7(23)، 57-82. https://jpmm.marvdasht.iau.ir/article_1905.html.
قربانیان، امیر؛ عبدلی، محمدرضا؛ ولیان، حسن و بودلائی، حسن (1402). ارزیابی کارکردهای حسابرسی داخلی شهروندِ شرکتی. مجله توسعه و سرمایه، 8(1)، 143-165. https://jdc.uk.ac.ir/article_3392.html.
کاظمی، توحید؛ فرقاندوست حقیقی، کامبیز و سلیمانپور، مقصود (1390). انتخاب سبد سهام بهینه از بین سهام شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران با استفاده از الگوریتم مورچگان. پایان‌نامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد تهران مرکز. https://ganj.irandoc.ac.ir.
کردستانی، غلامرضا و آشتاب، علی (1388). پیش بینی مدیریت سود بر مبنای تعدیل سود هر سهم. مجله توسعه و سرمایه، 2(2)، 141-158. https://jdc.uk.ac.ir/article_1912.html.
مدرس، احمد و افلاطونی، عباس (1388). مدیریت سود در شرکت‌های پذیرفته شده در بورس اوراق بهادار تهران. مجله توسعه و سرمایه، 2(2)، 51-72. https://jdc.uk.ac.ir/article_1908.html.
صادقی مال امیری، منصور (1393). رفتارهای سه گانه بخل، میانه روی و اسراف از دیدگاه سیستمی. مدیریت اسلامی، 22(1)، 141-166. https://im.ihu.ac.ir.
مهرانی، ساسان؛ گنجی، حمیدرضا؛ تحریری، آرش و عسکری، محمدرضا (1388). ارزیابی رتبه‌بندی شرکت‌ها بر اساس اطلاعات حسابداری و غیرحسابداری و مقایسه آن با رتبه‌بندی شرکت‌ها در بورس اوراق بهادار تهران. مجله توسعه و سرمایه، 2(1)، 7-32. https://jdc.uk.ac.ir/article_1899.html.
نمازی، محمد و ناظمی، امین (1387). مروری بر پژوهش‌‎های حسابداری انجام شده در بورس اوراق بهادار تهران. مجله توسعه و سرمایه، 1(2)، 9-48. https://jdc.uk.ac.ir/article_1891.html.
References
Abakarim, Y., Lahby, M., & Attioui, A. (2018). An efficient real time model for credit card fraud detection based on deep learning. In Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, (pp. 1-7). https://doi.org/10.1145/3289402.3289530.
Abdulghani, A.Q. (2021). Credit card fraud detection system using machine learning algorithms and fuzzy membership. DOI: 10.1109/MTICTI53925.2021.9664789.
Abhimanyu Roy, Jingyi Sun, Robert Mahoney, Loreto Alonzi, Stephen Adams, and Beling, P. (2018). Deep learning detecting fraud in credit card transactions. In 2018 Systems and Information Engineering Design Symposium (SIEDS). Charlottesville, VA, USA, 2018, 129-134. https://ieeexplore.ieee.org/document/8374722.
Abhishek, N., Reckien, D., & Van Maarseveen, M.F.A.M. (2019). A generalised fuzzy cognitive mapping approach for modelling complex systems. Applied Soft Computing, 84, 105754. https://doi.org/10.1016.
Alan Hevner, S.C. (2010). Design research in information systems: theory and practice. Springer Science & Business Media 22. DOI: 10.1007/978-1-4419-5653-8.
Bahrami, A., Noravesh, I., Raad, A., & Mohammadi Molgharni, A. (2021). Financial statements fraud and new techniques used to detect it. Accounting and Auditing Studies, 10(38), 105-118. DOI: 10.22034/iaas.2021.134547 [In Persian].
Bakhshi, K., Bahrak B., & Mahini, H. (2021). Fraud detection system in online ride-hailing services. 2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS), Tehran, Iran, Islamic Republic of, , 1-6. DOI: 10.1109/ICSPIS54653.2021.9729379.
Calamaro, N., Beck, Y., Ben Melech, R., & Shmilovitz, D. (2021). An energy-fraud detection-system capable of distinguishing frauds from other energy flow anomalies in an urban environment. Sustainability, 13(19), 10696. https://doi.org/10.3390/su131910696.
Dang, T.K., Tran, T.C., Tuan, L.M., & Tiep, M.V. (2021). Machine learning based on resampling approaches and deep reinforcement learning for credit card fraud detection systems. Applied Sciences, 11(21), 10004. https://doi.org/10.3390/app112110004.
Fredrick, A. (2018). The extents of neuroscience and neuropsychology in the study of artificial intelligence. IRA-International Journal of Applied Sciences, 13(3), 35-38. http://dx.doi.org/10.21013/jas.v13.n3.p1.
Ghaedi, M.R., & Golshani, A. (2016). Content analysis method: from quantity-orientation to quality-orientation. Psychological Models and Methods, 7(23), 57-82. https://jpmm.marvdasht.iau.ir/article_1905.html?lang=en [In Persian].
Ghorbaniyan, A., Abdoli, M., Valiyan, H., & Boudlaie, H. (2023). Appriseal of corporate citizen internal audit functions. Journal of Development and Capital, 8(1), 143-165. DOI: 10.22103/jdc.2022.19858.1273 [In Persian].
Jamali, J. , Mottaghi, A., & Mohammadi, A. (2021). A comparative study of bankruptcy prediction models and presenting an optimized model for Iran's economic environment. Journal of Development and Capital, 6(2), 111-134. DOI: 10.22103/jdc.2022.18728.1187 [In Persian].
Jan, C.L. (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan. Sustainability, 10(2), 513. https://doi.org/10.3390/su10020513.
Kalbande, D., Prabhu, P., Gharat A., & Rajabally, T. (2021). A fraud detection system using machine learning. 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, , pp. 1-7, DOI: 10.1109/ICCCNT51525.2021.9580102.
Kanika & Singla, J. (2019). Online banking fraud detection system: A review. International Journal of Advanced Trends in Computer Science and Engineering, 8(3), 959-962. https://doi.org/10.30534/ijatcse/2019/96832019.
Kanika & Singla, J. (2020). A survey of deep learning based online transactions fraud detection systems. International Conference on Intelligent Engineering and Management (ICIEM), IEEE, DOI: 10.1109/ICIEM48762.2020.9160200.
Kanika & Singla, J. (2022). A novel framework for online transaction fraud detection system based on deep neural network. Journal of Intelligent and Fuzzy Systems, 43(1), 927-937. https://doi.org/10.3233/JIFS-212616.
Kanika, Singla, J., & Nikita. (2021). Comparing ROC curve based thresholding methods in online transactions fraud detection system using deep learning. International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), https://doi.org/10.1109/icccis51004.2021.9397167.
Kazemi, T., Fargandoost Haghighi, K., & Soleymanpour, M. (2011). Selecting the optimal stock portfolio among the stocks of companies listed on the Tehran Stock Exchange using the Ant algorithm. Master's Thesis, Islamic Azad University, Central Tehran Branch. https://ganj.irandoc.ac.ir/#/articles/fc40530677d9740d5833b78b465f027c.
Khattri, V., Nayak, S.K., & Singh, D.K. (2020). Plastic card circumvention an infirmity of authenticity and authorization. Journal of Financial Crime, 27(3), 959-975. https://ideas.repec.org/a/eme/jfcpps/jfc-03-2020-0034.html.
Kordestani, Gh., & Ashtab, A. (2009). Predicting earnings management based on adjusted EPS. Journal of Development and Capital, 2(2), 141-158. DOI: 10.22103/jdc.2009.1912 [In Persian].
Krippendorff, K. (2022). Content analysis: An introduction to its methodology. Sage Publications, https://doi.org/10.4135/9781071878781.
Liang, Y., Nobakht, B., & Lindsay, G. (2021). The application of synthetic data generation and data-driven modelling in the development of a fraud detection system for fuel bunkering. Measurement: Sensors, 18. https://researchonline.gcu.ac.uk/en/publications.
Baily, M.N., Litan, R.E., & Johnson, M.S. (2008). The origins of the financial crisis. Initiative on Business and Public Policy at Brookings, https://bradscholars.brad.ac.uk/bitstream/10454/14383.
Mehrani, S., Ganji, H., Tahriri, A., & Asgari, M.R. (2009). Evaluation of firm ranking based on accounting and non accounting data and comparing it with firm ranking in Tehran Stock Exchange. Journal of Development and Capital, 2(1), 7-32. DOI: 10.22103/jdc.2009.1899 [In Persian].
Modarres, A., & Aflatooni, A. (2009). Earnings management in Tehran Stock Exchange (TSE). Journal of Development and Capital, 2(2), 51-72. DOI: 10.22103/jdc.2009.1908 [In Persian].
Namazi, M., & Nazemi, A. (2008). The investigation of the impact of effective the implications of the accounting research in Tehran Stock Exchange market. Journal of Development and Capital, 1(2), 9-48. DOI: 10.22103/jdc.2008.1891 [In Persian].
Ozbayoglu, A.M., Gudelek M.U., & Sezer, O.B. (2020). Deep learning for financial applications: A survey. Applied Soft Computing Journal, 93, 106384. https://doi.org/10.1016/j.asoc.2020.106384.
Pallavi, C., Girija, R., Rajamani, V., Dey, B., & Vincent, R. (2021). A relative investigation of various algorithms for online financial fraud detection techniques. Advances in Parallel Computing, 39, 22-32. DOI: 10.3233/APC210174.
Quintin-John, S., & Valverde, R. (2021). A perceptron based neural network data analytics architecture for the detection of fraud in credit card transactions in financial legacy systems. Wseas Transactions on Systems and Control, 16, 358-374. DOI: 10.37394/23203.2021.16.31.
Sadeghi Malmiri, M. (2014). Threefold behaviors of envy, moderation, and extravagance from the systematic viewpoint. Scientific Journal of Islamic Management, 22(1), 141-166. https://im.ihu.ac.ir/article_201793 [In Persian].
Saghafi, A., & Bahar Moghaddam, Ph.D, M. (2008). Incentives affecting earnings management. Journal of Development and Capital, 1(2), 103-125. DOI: 10.22103/jdc.2008.1894 [In Persian].
Sahayasakila,V., AishwaryaSikhakolli, D., Yasaswi, V. (2019). Credit card fraud detection system using smote technique and whale optimization algorithm. International Journal of Engineering and Advanced Technology, 8(5), 190-192. https://www.ijeat.org/wp-content/uploads/papers/v8i5/D6468048419.pdf.
Seera, M., et al. (2021). An intelligent payment card fraud detection system. Annals of Operations Research, 334(1), 445-467. https://ideas.repec.org/a/spr/annopr/v334y2024i1d10.1007_s10479-021-04149-2.html.
Sharma A., & Panigrahi, P.K. (2012). A review of financial accounting fraud detection based on data mining techniques. International Journal of Computer Applications, 39(1), 37–47. https://arxiv.org/pdf/1309.3944.
ShokouhiFard, S., Abolhasani, A., & Farhang, A. (2021). The Effects of corruption on financial fragility in Iran: A quantile regression approach. Journal of Development and Capital, 6(2), 93-110. DOI: 10.22103/jdc.2021.18460.1169 [In Persian].
Sumari, A.D.W., & Ahmad, A.S. (2018). Intelligent system, cognitive artificial intelligence: Concept and applications for humankind. Kasetsart Universit, DOI: 10.5772/intechopen.72764.
Tashdidi, E., Sepasi, S., Etemadi, H., & Azar, A. (2019). New approach to predicting and detecting financial statement fraud, using the bee colony. Journal of Accounting Knowledge, 10(3), 139-167. DOI: 10.22103/jak.2019.13616.2927 [In Persian].
Tyagi, N.K., & Goyal, M. (2022). Two tier model of exports drawback fraud detection system using intuitionistic fuzzy game theory. Intelligent Decision Technologies, 16(2), 299-313. DOI: 10.3233/IDT-210070.