شناسایی متغیرهای غیرشکننده مؤثر بر توسعه اقتصادی (بررسی در سطح استان‌های ایران)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم اقتصادی، دانشکده اقتصاد و علوم اجتماعی، دانشگاه شهید چمران اهواز، اهواز، ایران.

10.22103/jdc.2025.24107.1505

چکیده

هدف: دستیابی به سطح عادلانه و پایدار توسعه و رفاه اقتصادی- اجتماعی از اهداف سیاست‌های اقتصادی در تمامی کشورهای جهان است. هدایت جریان توسعه در مناطق مختلف می‌تواند بر نحوه مدیریت منطقه‌ای و قدرت تمرکز در حیطه‌های متفاوت اثرگذار باشد. اتخاذ سیاست‌های مطلوب در این راستا، نیازمند شناسایی مهم‌ترین عوامل مؤثر بر توسعه اقتصادی و بررسی همزمان ابعاد اقتصادی و غیراقتصادی است. هدف پژوهش حاضر شناسایی متغیرهای غیرشکننده مؤثر بر توسعه اقتصادی در سطح استان‌های کشور، با تمرکز بر توسعه انسانی است.
 
روش: اطلاعات شاخص‌های 73 عامل مؤثر بر توسعه اقتصادی در بازه زمانی (1400-1391)، وارد مدل‌های BMA، TVP-DMA و TVP-DMS شد. بر اساس میزان خطا، مدل BMA با بالاترین دقت برای برآورد مدل استفاده و 20 متغیر اصلی مؤثر بر توسعه اقتصادی شناسایی گردید.
 
یافته‌ها: نتایج نشان داد مخارج عمومی استان؛ مخارج جاری استان؛ سرمایه‌گذاری بخش خصوصی؛ هزینه‌های مواد غذایی به کل هزینه‌ها؛ درآمدهای مالیاتی به مخارج عمومی؛ بیکاری استانی؛ ارزش افزوده صنعت؛ جمعیت فعال؛ تورم استانی؛ تحصیلات عالیه؛ درآمد میانه؛ ضریب جینی؛ تحریم؛ شاخص سرمایه انسانی (کل کشور)؛ درآمدهای نفتی؛ تورم؛ نرخ ارز؛ شاخص حکمرانی خوب؛ شاخص ساختار تأمین مالی از بانک و شاخص اقتصاد مقاومتی مهم‌ترین متغیرهای مؤثر بر توسعه اقتصادی هستند.
 
نتیجه‌گیری: تورم، مخارج عمرانی استانی، تحریم‌ها، درآمدهای نفتی و ضریب جینی مهم‌ترین متغیرهای مؤثر بر توسعه اقتصادی بوده‌اند.

کلیدواژه‌ها

موضوعات


جمینی، داود؛ ایراندوست، کیومرث و جمشیدی، علیرضا (1400). تحلیل فضایی شاخص توسعه انسانی و شناسایی تعیین‌کننده‌های آن در ایران. فصلنامه علمی برنامه‌ریزی منطقه‌ای، 11(43)، 16-31. https://jzpm.marvdasht.iau.ir/article_4146.html.
سامتی، مرتضی؛ صامتی، مجید و قضاوی، رسول (1387). بررسی اثر ترکیب بودجه دولت بر رفاه اجتماعی در ایران: دوره زمانی (1382-1360). مجله توسعه و سرمایه، 1(2)، 70-49. https://jdc.uk.ac.ir/article_1892.html.
عسگری، حشمت‌اله؛ مریدیان، علی و هواس بیگی، فاطمه (1403). تأثیر پیچیدگی اقتصادی و نابرابری درآمد با تأکید بر نقش شاخص توسعه انسانی در اقتصاد ایران با رویکرد ARDL بوت استرپ. مجله توسعه و سرمایه، 9(2)، 56-35. https://jdc.uk.ac.ir/article_3262.html.
علیزاده، محمد؛ نعمتی، غلامرضا؛ فطرس، محمدحسن؛ خداوردی سامانی، مریم و کبیری، دینا (1401). شناسایی عوامل مؤثر  بر رفاه اجتماعی ایران تحت نااطمینانی: رویکرد متوسط گیری بیزی. اقتصاد باثبات، 3(1)، 61-99. https://sedj.usb.ac.ir/article_6703.html.
محمدی، تیمور؛ خیابانی، ناصر؛ بهرامی، جاوید و فهیمی‌فر، فاطمه (1399). مقایسه روش‌های مختلف پیش بینی رشد اقتصادی ایران با تأکید بر مدل‌های گزینشی نمودن و متوسط‌گیری الگوی پویا. پژوهش‌های اقتصادی (رشد و توسعه پایدار)، ۲۰(۴)،۹۳-۱۲۳. https://ecor.modares.ac.ir/article-18-38166-fa.html.
مهرآرا، محسن؛ رضایی برگشادی، صادق (1395). بررسی عوامل مؤثر بر رشد اقتصادی ایران مبتنی بر رویکرد متوسط گیری بیزین (BMA) و حداقل مربعات متوسط وزنی (WALS). پژوهش‌های رشد و توسعه اقتصادی، 6(23)، 114-89. https://egdr.journals.pnu.ac.ir/article_2724.html.
نوری نائینی، محمدسعید؛ قاسمی، حسام‌الدین و کاظمی تربقان، مریم سادات (1396). بررسی عوامل مؤثر بر شاخص توسعه انسانی در ایران با استفاده از روکرد میانگین‌گیری بیزی. پژوهش‌های رشد و توسعه اقتصادی، 8(29)، 45-60. https://egdr.journals.pnu.ac.ir/article_3039.html.
 
References
Alderman, H., & Yemtsov, R (2014). How can safety nets contribute to economic growth? The World Bank Economic Review, 28(1), 1–20. DOI: 10.1093/wber/lht011.
Alizadeh, M., Nemati, G., Fotros, M.H., Khodaverdi Samani, M., & Kabiri, D. (2022). Identifying factors affecting Iran’s social welfare under uncertainty: A Bayesian average approach. Stable Economy Journal, 3(1), 61-97. https://sedj.usb.ac.ir/article_6703.html?lang=en [In Persian].
Angelini, P., Enria, A., Neri, S., Panetta, F. & Quagliariello, M. (2010). Pro-cyclicality of capital regulation: is it a problem? How to fix it? Bank of Italy, Occasional Paper 74. https://ideas.repec.org/p/bdi/opques/qef_74_10.html.
Arisman, A. (2018). Determinant of human development index in ASEAN countries. Signifikan J. Ilmu Ekon, 7(1), 113-122. DOI: 10.15408/sjie.v7i1.6756.
Artis, M.J., Galvao, A.B., & Marcellino, M. (2007). The transmission mechanism in a changing world. Journal of Applied Econometrics, 22(1), 39-61. https://ideas.repec.org/a/jae/japmet/v22y2007i1p39-61.html.
Asgari, H., Moridian, A., & Havasbeigi, F. (2024). The impact of economic complexity on income inequality with emphasis on the role of human development index in Iran's economy with ARDL bootstrap approach. Journal of Development and Capital, 9(2), 35-56. https://jdc.uk.ac.ir/article_3262.html?lang=en [In Persian].
Aye, G., Gupta, R., Hammoudeh, S., & Kim, W.J. (2015). Forecasting the price of gold using dynamic model averaging. International Review of Financial Analysis, 41, 257–266. https://doi.org/10.1016/j.irfa.2015.03.010.
Baur, D.G., Beckmann, J., & Czudaj, R. (2016). A melting pot- Gold price forecasts under model and parameter uncertainty. International Review of Financial Analysis, 48, 282–291. https://doi.org/10.1016/j.irfa.2016.10.010.
Belmonte, M., & Koop, G. (2014). Model switching and model averaging in timevarying parameter regression models. Advances in Econometrics, 34, 45-69. https://ideas.repec.org/h/eme/aecozz/s0731-905320140000034004.html.
Bernanke, B.S., Boivin, J., & Eliasz, P. (2003). Measuring the effects of monetary policy: A FAVAR approach. Manuscript, Princeton University. https://faculty.wcas.northwestern.edu/lchrist/finc520/QJE.pdf.
Boivin, J., & Ng, S. (2006). Are more data always better for factor analysis? Journal of Econometrics, 132(1), 169-194. https://doi.org/10.1016/j.jeconom.2005.01.027.
Bruns, S.B., & Ioannidis, J.P.A. (2019). Determinants of economic growth: Different time different answer? Journal of Macroeconomics, 63, 103-185. DOI: 10.1016/j.jmacro.2019.103185.
Buncic, D., & Moretto, C., (2015). Forecasting copper prices with dynamic averaging and selection models. The North American Journal of Economics and Finance, 33, 1–38. https://doi.org/10.1016/j.najef.2015.03.002.
Clapp, J. (2000). Development as freedom. SAGE Publications. Sage UK: London, England. [Researchgate].
Claudia, K.S., & Arif, M. (2022). Determinant analysis of human development index (HDI) in semarang residency. In International Conference on Economics and Business Studies (ICOEBS 2022) pp. 52-58. Atlantis Press. DOI: 10.2991/aebmr.k.220602.008.
Cook, J.T., & Frank, D.A. (2008). Food security, poverty, and human development in the United States. Annals of the New York Academy of Sciences, 1136(1), 193–209. DOI: 10.1196/annals.1425.001.
D'Agostino, A., Gambett, L., & Giannone, D. (2013).  Macroeconomic Forecasting and Structural Change. Journal of Applied Econometrics, 28(1), 82-101. https://ideas.repec.org/a/wly/japmet/v28y2013i1p82-101.html.
Di Filippo, G. (2015). Dynamic model averaging and CPI inflation forecasts: A comparison between the euro area and the United States. Journal of Forecasting, 34(8), 619-648. https://doi.org/10.1002/for.2350.
Drachal, K. (2016). Forecasting spot oil price in a dynamic model averaging framework- Have the determinants changed over time? Energy Economics, 60, 35–46. https://doi.org/10.1016/j.eneco.2016.09.020.
Farrington, J., & Robinson, M. (2006). Introduction: Meeting the challenges to growth and poverty reduction. Development Policy Review, 24, 3-12. https://doi.org/10.1111/j.1467-7679.2006.00338.x.
Forni, M., Hallin, M., Lippi, M. & Reichlin, L. (2003). Do financial variables help forecasting inflation and real activity in the Euro area? Journal of Monetary Economics, 50, 1243–1255. https://doi.org/10.1016/S0304-3932(03)00079-5.
Forni, M., Hallin, M., Lippi, M., & Reichlin, L. (2004). The generalized dynamic factor model consistency and rates. Journal of Econometrics, 119(2), 231–255. DOI: 10.1198/016214504000002050.
Forni, M., Reichlin, L., Hallin, M., & Lippi, M. (2000). The generalized dynamic-factor model: Identification and estimation. Review of Economics and Statistics, 82(4), 540-554. https://www.jstor.org/stable/2646650.
Fossaceca, A. (2020). Assessing the determinants of the human development index in oil-dependent nations. Undergraduate Economic Review, 16(1), 19. https://digitalcommons.iwu.edu/uer/vol16/iss1/19.
Greve, J., Grün, B., Malsiner‐Walli, G., & Frühwirth‐Schnatter, S. (2022). Spying on the prior of the number of data clusters and the partition distribution in Bayesian cluster analysis. Australian & New Zealand Journal of Statistics, 64(2), 205–229. https://doi.org/10.1111/anzs.12350.
Guild, E., & Selm, J. (2005). International migration and security: Opportunities and challenges (Transnationalism). Routledge. https://doi.org/10.4324/9780203236581.
Gupta, R., Hammoudeh, Sh., Kim, W.J., & Simo-Kengne, B.D. (2014). Forecasting China’s foreign exchange reserves using dynamic model averaging: The roles of macroeconomic fundamentals, financial stress and economic uncertainty. North American Journal of Economics and Finance, 28, 170-189. DOI: 10.1016/j.najef.2014.02.003.
Jamini, D., Irandoost, K., & Jamshidi, A. (2021). Spatial analysis of human development index and identify its determinants in Iran. Regional Planning, 11(43), 16-31. https://jzpm.marvdasht.iau.ir/article_4146.html [In Persian].
Kamil, M., &Pratama, M. (2020). Openness, digital, and human development: Case study of ASEAN countries. Second International Research Conference on Economics and Business IRCEB-Volume 1, 187-192. https://www.scitepress.org/Papers/2018/87857/87857.pdf.
Karlan, J. (2014). Dean and Murdoch, macroeconomics. New York: McGraw Hill Education. https://www.mheducation.com/highered/product/Macroeconomics-Karlan.html.
Keating, B., Buchanan, J.M., Tollison, R.D., & Tullock, G. (1982). Toward a theory of the rent-seeking society. Southern Economic Journal, 48(3), 823. https://api.semanticscholar.org/CorpusID:153517516.
Khan, M.A., & Milne, G. (2019). Global governance, neoliberalism and national responses: The case of Bangladesh’s ready‐made garment (RMG) sector. Development Policy Review, 37, O230-O247. DOI: 10.1111/dpr.12383.
Killick, T. (2001). Globalisation and the rural poor. Development Policy Review, 19(2), 155–180. https://doi.org/10.1111/1467-7679.00129.
Koop, G., & Korobilis, D. (2009). Bayesian multivariate time series methods for empirical macroeconomics. SSRN Electronic Journal. https://ssrn.com/abstract=1514412.
Koop, G., & Korobilis, D. (2011). UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so? Economic Modelling, 28, 2307–2318. DOI: 10.2139/ssrn.1509724.
Koop, G., & Korobilis, D. (2012). Forecasting inflation using dynamic model averaging. International Economic Review, 53(3), 867-886. https://doi.org/10.1111/j.1468-2354.2012.00704.x.
Koop, G., McIntyre, S., Mitchell, J., & Poon, A. (2020). Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970. J. Appl. Econometrics, 35, 176-197. https://doi.org/10.1002/jae.2748.
Kurniawan, B., Kusdiana, D., Suryaman, R., & Priadana, M. (2023). The influence of macroeconomic factors and corruption on human development in ASEAN-7. In Proceedings of the 6th International Conference of Economics, Business, and Entrepreneurship, ICEBE, 13-14 September 2023, Bandar Lampung, Indonesia. DOI: 10.4108/eai.13-9-2023.2341207.
Marcellino, M., & Stock, H.J., & Watson, M.W. (2003). Macroeconomic forecasting in the euro area: Country specific versus area-wide information. European Economic Review, 47(1), 1-18. DOI: 10.1016/S0014-2921(02)00206-4.
Mark, C., Metzner, C., Lautscham, L., Strissel, P.L., Strick, R., & Fabry, B. (2018). Bayesian model selection for complex dynamic systems. Nat Commun, 9(1), 1803. https://www.nature.com/articles/s41467-018-04241-5.
Mehrara, M., & Rezaei Bargoshadi, S. (2016). The determinants of economic growth in Iran based on Bayesian model averaging and weighted averaging least square. Economic Growth and Development Research, 6(23), 114-89. https://egdr.journals.pnu.ac.ir/article_2724.html?lang=en [In Persian].
Mohammadi, T., Khiabani, N., Bahrami, J., & Fahimifar F. (2020). Comparison of different methods of predicting Iran's economic growth with an emphasis on dynamic model selection and dynamic model averaging. The Economic Research (Sustainable Growth and Development), 20(4), 93-123. http://ecor.modares.ac.ir/article-18-38166-fa.html [In Persian].
Mongan, J.J.S. (2019). Pengaruh pengeluaran pemerintah bidang pendidikan dan kesehatan terhadap indeks pembangunan manusia di Indonesia. Indonesian Treasury Review, 4(2), 163-176. https://itrev.kemenkeu.go.id/-index.php/ITRev/article/view/122.
Naser, H. (2014). An econometric investigation of forecasting GDP, oil prices, and relationships among GDP and energy sources. Ph.D. Dissertation, University of Sheffeild. https://etheses.whiterose.ac.uk/id/eprint/7041.
Naser, H., & Alaali, F. (2018). Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach. Empirical Economics, 55(4), 1757–1777. [Repec].
Nattrass, N., & Seekings, J. (2018). Employment and labour productivity in high unemployment Countries. Development Policy Review, 36, O769-O785. https://doi.org/10.1111/dpr.12313.
Nicoletti, G., & Passaro, R. (2012). Sometimes it helps the evolving predictive power of spreads on GDP dynamics. Working Paper Series, European Central Bank, No. 1447. https://www.ecb.europa.eu/pub/pdf/scpwps/-ecbwp1447.pdf.
Noori Naeini, M.S., Ghasemi, H., & Kazemi Torbaghan, M.S. (2017). Examination of affecting factors on Iran’s human development index using Bayesian model averaging approach. Economic Growth and Development Research, 8(29), 45-60 https://egdr.journals.pnu.ac.ir/article_3039.html?lang=en [In Persian].
Pangestika, M., & Widodo, E. (2017). Panel regression analysis of factors affecting human development index in districts/ Cities D.I.Yogyakarta. National Seminar and the 4th Call for Sharia Paper, pp. 198–205. https://ijistech.org/ijistech/index.php/ijistech/article/view/4.
Paus, E. (2009). The rise of China: Implications for Latin American development. Development Policy Review, 27(4), 419–456. DOI: 10.1111/j.1467-7679.2009.00454.x.
Peet, R., & Hartwick, E. (2015). Theories of development: Contentions, arguments, alternatives. Guilford Publications. DOI: 10.26458/jedep.v4i4.127.
Pogge, T. (2004). Assisting the global poor. In D.K. Chatterjee (Ed.), The ethics of assistance: Morality and the distant needy. Cambridge University Press, pp. 260–287. https://openresearch-repository.anu.edu.au/server/api/core/-bitstreams/a5cabad7-7fdf-4c60-a470-666031d2b19d/content.
Raftery, A.E., Kárný, M., & Ettler, P. (2010). Online prediction under model uncertainty via dynamic model averaging: Application to a cold rolling mill. Technometrics, 52(1), 52–66. DOI: 10.1198/TECH.2009.08104.
Risse, M., Kern, M. (2016). Forecasting house-price growth in the Euro area with dynamic model averaging. The North American Journal of Economics and Finance, 38, 70–85. https://doi.org/10.1016/j.najef.2016.08.001.
Sachs, J.D. (2005). Investing in development: A practical plan to achieve the millennium development goals. United Nations Development Programme. UN Millennium Project. Earthscan. [PDF].
Sala-I-Martin, X., Doppelhofer, G., & Miller, R.I. (2004): Determinants of long-term growth: Bayesian averaging of classical estimates (BACE). American Economic Association 94(4), 813–835. [PDF].
Sameti, M., Sameti, M., & Ghazavi, R. (2008). Studying the effect of state budget composition for social welfare in Iran: During the years (1981-2003). Journal of Development and Capital, 1(2), 49-70. https://jdc.uk.ac.ir/article_1892.html?lang=en [In Persian].
Sayifullah, S., & Gandasari, T.R. (2016). Pengaruh indeks pembangunan manusia dan pengangguran terhadap kemiskinan di Provinsi Banten. Jurnal Ekonomi-Qu, 6(2), 236-255. http://dx.doi.org/10.35448/jequ.v6i2.4345.
Schumacher, J., Hoffmann, P., Schmäl, C., Schulte-Körne, G., & Nöthen, M.M. (2007). Genetics of dyslexia: The evolving landscape. Journal of Medical Genetics, 44(5), 289–297. DOI: 10.1136/jmg.2006.046516.
Sen, A. (1985). Commodities and capabilities. OUP Catalogue, Oxford University Press. [Abebooks].
Sen, A. (1999). Democracy as a universal value. Journal of Democracy, 10(3), 3-17. [PDF].
Sen, A. (2001). Development as freedom. Oxford Paperbacks. [PDF].
Seyedsayamdost, E. (2018). Millennium development goals: Impact on national strategies and spending. Development Policy Review, 36(S1), 59-88. https://ideas.repec.org/a/bla/devpol/v36y2018is1po59-o88.html.
Soebagiyo, D. (2007). Disparitas pembangunan Dan Faktor-faktor Yang Mempengaruhinya (Studi Kasus Di Daerah Sumbagsel). Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi dan Pembangunan, 1(1), 21-34. DOI: 10.23917/jep.v1i1.3890.
Solow, R.M. (1956). A contribution to the theory of economic growth. The Quarterly Journal of Economics, 70(1), 65-94. https://www.jstor.org/stable/1884513.
Srinivasan, S. (2007). No democracy without justice: Political freedom in Amartya Sen's capability approach. Journal of Human Development, 8(3), 457–480. https://doi.org/10.1080/14649880701462395.
Stock, J.H., & Watson, M.W. (2002). Forecasting using principal components from a large number of predictors. Journal of the American Statistical Association, 97, 1167-1179. https://www.jstor.org/stable/3085839.
Stock, J.H., & Watson, M.W. (2002). Macroeconomic forecasting using diffusion indexes. Journal of Business & Economic Statistics, 20(2), 147-162. https://doi.org/10.1198/073500102317351921.
Sulistyowati, U., & Magna, M.S. (2023). The impact of policies during Covid-19 by factors affecting the human development index in soloraya using regression method. International Journal of Multidisciplinary Research and Literature, 2(3), 316-322. https://ijomral.esc-id.org/index.php/home/article/view/118.
Sumiyarti, S., Firdayeti, F., & Handayani, K. (2022). Determinants of human development index: Case study of provinces in Indonesia. Proceedings of the first lekantara annual conference on public administration, literature, social sciences, humanities, and education, LePALISSHE 2021, August 3, 2021, Malang, Indonesia. http://dx.doi.org/10.4108/eai.3-8-2021.2315091.
Syofya, H. (2018). Effect of poverty and economic growth on Indonesia human development index. Jurnal Ilmiah Universitas Batanghari Jambi, 18(2), 416–423. DOI: 10.33087/jiubj.v18i2.486.
Telch F., & Appe S. (2022). How can countries improve human development? Four distinct national planning strategies and the challenges for human development ahead. Development Policy Review, Overseas Development Institute, vol. 40(2), March. https://doi.org/10.1111/dpr.12561.
Tsai, M.C. (2006).Macro-structural determinants of political freedom in developing countries: A cross-national analysis. Social Indicators Research, 76(2), 317–340. DOI: 10.1007/s11205-005-0207-9.
United Nations. (1990). Human development Report 1990. UNDP. [PDF].
United Nations. (2018). World Urbanization Prospects: The 2018 Revision. Population division of the UN department of economic and social affairs (UN DESA). https://www.un.org/en/desa/2018-revision-world-urbanization-prospects.
United Nations. (2020). Human Development Report 2020- technical notes. United Nations Development Programme (UNDP). https://hdr.undp.org/content/human-development-report-2020.
Van der Hoeven, R. (2003). Into the twenty-first century: Assessing social and political concerns. In H.van Ginkel, B. Barrett, J. Court, J. & J. Velasquez (Eds.), Human development and the environment: Challenges for the United Nations in the new millennium. United Nations University Press. https://www.researchgate.net/publication/44828355.
Van Wolferen, K. (2003). Conceptual challenges of a globalizing economy. In H. van Ginkel, B. Barrett, J. Court, J. & J. Velasquez (Eds.), Human Development and the Environment: Challenges for the United Nations in the New Millennium. United Nations University Press. https://digitallibrary.un.org/record/469068?ln=ar&v=pdf.
Yolanda, Y. )2017). Analysis of factors affecting inflation and its impact on human development index and poverty in Indonesia. European Research Studies Journal, 20(4), 38–56. DOI: 10.35808/ersj/873.
Zhang, Ch., & Frederick A., & Matsen, I.V. (2018). Generalizing tree probability estimation via Bayesian networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. CesaBianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems 31, 1451–1460. DOI: 10.48550/arXiv.1805.07834.
Zhou, Y., Lin, R., & Lee, J.J. (2021). The use of local and nonlocal priors in Bayesian test-based monitoring for single-arm phase II clinical trials. Pharm Stat. 20(6), 1183-1199. https://doi.org/10.1002/pst.2139.