بهرامی، آسو؛ نوروش، ایرج؛ راد، عباس و محمد ملقرنی، عطااله (1399). تقلب در صورتهای مالی و تکنیکهای نوین مورد استفاده جهت کشف آن.
مطالعات حسابداری و حسابرسی، 10(38)، 105-118.
https://www.iaaaas.com/article_134547.html.
تشدیدی، الهه؛ سپاسی، سحر؛ اعتمادی، حسین و آذر، عادل (1398). ارائه رویکردی نوین در پیشبینی و کشف تقلب صورتهای مالی با استفاده از الگوریتم زنبور عسل.
مجله دانش حسابداری، 10(3)، 139-167.
https://jak.uk.ac.ir/article_2378.html.
جلال جمالی، علی اصغر؛ متقی، احمد محمدی (1400). مطالعه مقایسهای الگوهای پیشبینی ورشکستگی و ارائه الگوی بهینه برای محیط اقتصادی ایران.
مجله توسعه و سرمایه، 6(2)، 111-134.
https://jdc.uk.ac.ir/article_3154.html.
شکوهی فرد، سیامک؛ ابوالحسنی، اصغر و فرهنگ، امیرعلی (1400). اثرات فساد بر شکنندگی مالی در ایران: رهیافت رگرسیون کوانتایل.
مجله توسعه و سرمایه، 6(2)، 93-110.
https://jdc.uk.ac.ir/article_3106.html.
کاظمی، توحید؛ فرقاندوست حقیقی، کامبیز و سلیمانپور، مقصود (1390). انتخاب سبد سهام بهینه از بین سهام شرکتهای پذیرفته شده در بورس اوراق بهادار تهران با استفاده از الگوریتم مورچگان.
پایاننامه کارشناسی ارشد، دانشگاه آزاد اسلامی واحد تهران مرکز.
https://ganj.irandoc.ac.ir.
صادقی مال امیری، منصور (1393). رفتارهای سه گانه بخل، میانه روی و اسراف از دیدگاه سیستمی.
مدیریت اسلامی، 22(1)، 141-166.
https://im.ihu.ac.ir.
مهرانی، ساسان؛ گنجی، حمیدرضا؛ تحریری، آرش و عسکری، محمدرضا (1388). ارزیابی رتبهبندی شرکتها بر اساس اطلاعات حسابداری و غیرحسابداری و مقایسه آن با رتبهبندی شرکتها در بورس اوراق بهادار تهران.
مجله توسعه و سرمایه، 2(1)، 7-32.
https://jdc.uk.ac.ir/article_1899.html.
References
Abakarim, Y., Lahby, M., & Attioui, A. (2018). An efficient real time model for credit card fraud detection based on deep learning.
In Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications, (pp. 1-7).
https://doi.org/10.1145/3289402.3289530.
Abhimanyu Roy, Jingyi Sun, Robert Mahoney, Loreto Alonzi, Stephen Adams, and Beling, P. (2018). Deep learning detecting fraud in credit card transactions.
In 2018 Systems and Information Engineering Design Symposium (SIEDS). Charlottesville, VA, USA, 2018, 129-134.
https://ieeexplore.ieee.org/document/8374722.
Abhishek, N., Reckien, D., & Van Maarseveen, M.F.A.M. (2019). A generalised fuzzy cognitive mapping approach for modelling complex systems.
Applied Soft Computing, 84, 105754.
https://doi.org/10.1016.
Alan Hevner, S.C. (2010). Design research in information systems: theory and practice. Springer Science & Business Media 22. DOI:
10.1007/978-1-4419-5653-8.
Bahrami, A., Noravesh, I., Raad, A., & Mohammadi Molgharni, A. (2021). Financial statements fraud and new techniques used to detect it.
Accounting and Auditing Studies, 10(38), 105-118. DOI:
10.22034/iaas.2021.134547 [In Persian].
Bakhshi, K., Bahrak B., & Mahini, H. (2021). Fraud detection system in online ride-hailing services.
2021 7th International Conference on Signal Processing and Intelligent Systems (ICSPIS), Tehran, Iran, Islamic Republic of, , 1-6. DOI:
10.1109/ICSPIS54653.2021.9729379.
Calamaro, N., Beck, Y., Ben Melech, R., & Shmilovitz, D. (2021). An energy-fraud detection-system capable of distinguishing frauds from other energy flow anomalies in an urban environment.
Sustainability, 13(19), 10696.
https://doi.org/10.3390/su131910696.
Dang, T.K., Tran, T.C., Tuan, L.M., & Tiep, M.V. (2021). Machine learning based on resampling approaches and deep reinforcement learning for credit card fraud detection systems.
Applied Sciences, 11(21), 10004.
https://doi.org/10.3390/app112110004.
Fredrick, A. (2018). The extents of neuroscience and neuropsychology in the study of artificial intelligence.
IRA-International Journal of Applied Sciences, 13(3), 35-38.
http://dx.doi.org/10.21013/jas.v13.n3.p1.
Ghorbaniyan, A., Abdoli, M., Valiyan, H., & Boudlaie, H. (2023). Appriseal of corporate citizen internal audit functions.
Journal of Development and Capital, 8(1), 143-165. DOI:
10.22103/jdc.2022.19858.1273 [In Persian].
Jamali, J. , Mottaghi, A., & Mohammadi, A. (2021). A comparative study of bankruptcy prediction models and presenting an optimized model for Iran's economic environment.
Journal of Development and Capital, 6(2), 111-134. DOI:
10.22103/jdc.2022.18728.1187 [In Persian].
Jan, C.L. (2018). An effective financial statements fraud detection model for the sustainable development of financial markets: Evidence from Taiwan.
Sustainability, 10(2), 513.
https://doi.org/10.3390/su10020513.
Kalbande, D., Prabhu, P., Gharat A., & Rajabally, T. (2021). A fraud detection system using machine learning. 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, , pp. 1-7, DOI: 10.1109/ICCCNT51525.2021.9580102.
Kanika & Singla, J. (2020). A survey of deep learning based online transactions fraud detection systems. International Conference on Intelligent Engineering and Management (ICIEM), IEEE, DOI: 10.1109/ICIEM48762.2020.9160200.
Kanika & Singla, J. (2022). A novel framework for online transaction fraud detection system based on deep neural network.
Journal of Intelligent and Fuzzy Systems, 43(1), 927-937.
https://doi.org/10.3233/JIFS-212616.
Kanika, Singla, J., & Nikita. (2021). Comparing ROC curve based thresholding methods in online transactions fraud detection system using deep learning.
International Conference on Computing, Communication, and Intelligent Systems (ICCCIS),
https://doi.org/10.1109/icccis51004.2021.9397167.
Kordestani, Gh., & Ashtab, A. (2009). Predicting earnings management based on adjusted EPS.
Journal of Development and Capital, 2(2), 141-158. DOI:
10.22103/jdc.2009.1912 [In Persian].
Liang, Y., Nobakht, B., & Lindsay, G. (2021). The application of synthetic data generation and data-driven modelling in the development of a fraud detection system for fuel bunkering.
Measurement: Sensors, 18.
https://researchonline.gcu.ac.uk/en/publications.
Mehrani, S., Ganji, H., Tahriri, A., & Asgari, M.R. (2009). Evaluation of firm ranking based on accounting and non accounting data and comparing it with firm ranking in Tehran Stock Exchange.
Journal of Development and Capital, 2(1), 7-32. DOI:
10.22103/jdc.2009.1899 [In Persian].
Modarres, A., & Aflatooni, A. (2009). Earnings management in Tehran Stock Exchange (TSE).
Journal of Development and Capital, 2(2), 51-72. DOI:
10.22103/jdc.2009.1908 [In Persian].
Namazi, M., & Nazemi, A. (2008). The investigation of the impact of effective the implications of the accounting research in Tehran Stock Exchange market.
Journal of Development and Capital, 1(2), 9-48. DOI:
10.22103/jdc.2008.1891 [In Persian].
Pallavi, C., Girija, R., Rajamani, V., Dey, B., & Vincent, R. (2021). A relative investigation of various algorithms for online financial fraud detection techniques.
Advances in Parallel Computing, 39, 22-32. DOI:
10.3233/APC210174.
Quintin-John, S., & Valverde, R. (2021). A perceptron based neural network data analytics architecture for the detection of fraud in credit card transactions in financial legacy systems. Wseas Transactions on Systems and Control, 16, 358-374. DOI: 10.37394/23203.2021.16.31.
Sadeghi Malmiri, M. (2014). Threefold behaviors of envy, moderation, and extravagance from the systematic viewpoint.
Scientific Journal of Islamic Management, 22(1), 141-166.
https://im.ihu.ac.ir/article_201793 [In Persian].
Saghafi, A., & Bahar Moghaddam, Ph.D, M. (2008). Incentives affecting earnings management.
Journal of Development and Capital, 1(2), 103-125. DOI:
10.22103/jdc.2008.1894 [In Persian].
Sharma A., & Panigrahi, P.K. (2012). A review of financial accounting fraud detection based on data mining techniques.
International Journal of Computer Applications, 39(1), 37–47.
https://arxiv.org/pdf/1309.3944.
ShokouhiFard, S., Abolhasani, A., & Farhang, A. (2021). The Effects of corruption on financial fragility in Iran: A quantile regression approach.
Journal of Development and Capital, 6(2), 93-110. DOI:
10.22103/jdc.2021.18460.1169 [In Persian].
Sumari, A.D.W., & Ahmad, A.S. (2018). Intelligent system, cognitive artificial intelligence: Concept and applications for humankind. Kasetsart Universit, DOI:
10.5772/intechopen.72764.
Tashdidi, E., Sepasi, S., Etemadi, H., & Azar, A. (2019). New approach to predicting and detecting financial statement fraud, using the bee colony.
Journal of Accounting Knowledge, 10(3), 139-167. DOI:
10.22103/jak.2019.13616.2927 [In Persian].
Tyagi, N.K., & Goyal, M. (2022). Two tier model of exports drawback fraud detection system using intuitionistic fuzzy game theory.
Intelligent Decision Technologies, 16(2), 299-313. DOI:
10.3233/IDT-210070.